HELICAL FLOWS IN A SPHERE

V. M. Bykov UDC 532.5

Let @ be a domain in R® containing the origin and bounded by the smooth surface S with unit external
normal vector n. The vector field v, smooth in the class C! in @ and continuous in & for which

rotv = Av; (1)
“venlg =0 (2)
(A=const =0), is called a homogeneous helical flow. From (1) we obtain div v=0, hence, rot rot v=—Av= sz,
and the Cartesian components of the field v should be analytic functions in ©. In particular, v decomposes into
the Taylor series

Y = 2 Vp, (3)
p==0

" which converges uniformly in some neighborhood of the origin. Here each Vp is a homogeneous polynomial
vector field of degree p and divergence zero. The following lemmas describe the connection of the fields Vp to
the harmonic polynomials:

LEMMA 1. If Hy is a homogeneous harmonic polynomial of degree n, then there exists a sequence {vg, n}
(s =0, 1, 2...) of homogeneous polynomial fields (deg Vs, n=n+s—1) satisfying the conditions

Von = grad H,; 4)
TOb Ven = Veq, n as s3> 1. (5)
Proof. Let us give vg p by the formulas
Vopun = Cpn?®-(n + 2k + 1) grad H, — 2knH 1 |; (6)
Vopt+1,n = Cpprttgrad H, X r, ("
where
I‘(n+_3_) e
Croa=—57T1 — P or={2y) P=atyia (8)
22451 (n+ k—{—%)

The property (4) is evident. The property (5) is verified by using standard vector analysis formulas and

the formula
rot (v, Xr) = (p + 2)vp — r div Vo
which is valid for a homogeneous vector field vp of degree p and obtained from the formula
rot (v, X 1) = (r, ¥)Vp — (Vp, ¥)r +vp dive — r div vy,

taking into account that (r, V)vp=pvp (the Euler theorem about homogeneous functions), (v,, V)r =Vp» divr=3.

LEMMA 2. For any field v satisfying (1) and baving the Taylor expansion (3), there exists a sequence
{Hp} (n=1, 2, 3, ...) of homogeneous harmonic polynomials of deg Hy,=n, such that for all p
9

s +H
—n
Vp = 2 ’vf, Vp——n+1,m‘
n=1

where vp_p+y p is the field constructed by means of Hp because of Lemma 1,

Proof. For p=0 we have vy=grad H; =V ;, where the linear form H,; is defined uniquely. Let Hp be
defined for 1=n=p+1 and let (9) hold. Let us define Hp+2 so that the equality (9) would be satisfied by
replacing p by p+1. Because of the uniqueness of the Taylor expansion we have

Chelyabinsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, March-April,
1979. Original article submitted March 29, 1978.

164 0021-8944/79/2002- 0164 $07.50 ©1979 Plenum Publishing Corporation



P41
rob Vo =Avy = X APy,

n=1

Then according to Lemma 1
/ B pnte
rot (vpﬂ — 'gl AP "I’*'IH-Z.‘I&) = Av, — Av, =0,

ptt :
hence v, , — 2 A" "2y, .o .= grad Hp,,, where the polynomial Hy+, is defined uniquely by the requirement
== .

of homogeneity. We have

/ Pt p—nt2
AHp+2 = div { Vp+1 — 21 A “Vp—niz,m | = Ua
\ n=

P+
hence, the polynomial Hp+, is harmonic, and we can set vy, p+,=grad Hy+y, from which vy, = Z AT o

The lemma is proved.
For each n let us define the vector field

10
v(n) = ‘> }\.Svs‘nd ( )

where Vs,n is the field constructed in Lemma 1 by means of the harmonic polynomial Hy from Lemma 2.
Formula (8) for Cy, shows that the series (10) converges uniformly for all r. This series can be differentiated
term b%z term, and hence rot vin) = }\v(“) and v{0) can be evaluated explicitly. To do this, we note that v(0) =

v(n vy n) , where the components are the "even" and "odd"® parts of ¥in) corresponding to (6) and (7):

o o0
ny __ %k ny Opepei
= hz() A Vopm, Vo = ‘?.JO;\ Vopt,n,

where vSLn) =A"! rot v(_n) so that it is sufficient to find v(_n). It follows from (7) and (8) that

n+ ) - k 2k
— 2 {11)
v = 1 E . 3 (Tr) grad H, X r = A r—n—12],. ., (Ar) grad H, xr,
' k'r‘<n»,'—k+__)
2
where Ap=An+ 1)"1I‘(n+3/2); Jn+1/2()\r) is the Bessel function.
LetS, < Q be a sphere of radius r with center at the origin. Let us show that
{vrH,d8 = [vo.eH,ds. (12)
5, S,
To do this we examine the partial sum 8y, of the series (3). By virtue of Lemma 2
m-i:l ™ . m+1 m—n41
Z Vp = Z 2’ M =2 X Wy .= > 2 ANea = Z, S nri,
p=0 p=0 n=1 ne=} p=n—i n=i s=0 ! =1

where Sgll)_nﬂ is the partial sum of the series (10). We have
m--1 . m—}:i
Sm'l‘ = }.. S;;LLZ byt T = :}..‘1 Jm=nt1 (r) i,
= n==
where fmm_pn+((r) are polynomials whose explicit form can be extracted from (6). From the last equality and
the orthogonality of the spherical functions of different orders there follows that for m=n—1

5‘ Sm rI{ndS = 7771—71-\-1 (7) g ]113, ds== g S(T::Ln_:_yrH‘ndS, (13)

5, 8,

Let r « €, where € is the radius of a sphere in which the series (8} converges uniformly. Then it is possi-
ble to pass to the limit as m —« under the integral sign in both sides of (13), and (12) is proved for r < €.
Since both sides of this equality are analytic functions of r, then it is true for all r for which 5, — Q.

Now, let @ be a sphere of radius R with center at the origin. By continuity, (12) is satisfied even for
r =R, where it follows from (2) that both its sides equal zero. Let n be the first number for which H,=0. We
have
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VO = (v 4 V) x = v,

since vin) *r=0 by virtue of (11). Furthermore, vﬂrn) ir=x"1rot v(_n) sp=A71 div(v(_n) x 1), from which we obtain
by using (11)

vPer =l (n + %) L NV

The equality (12) becomes

nI‘(n + %) R R § Hads =0, (14)
S

from which Jp1 4(AR) =0 and A= MR, where ({1 is the k-th root of the function Jp+q(z).
n+i/2 e M 1/2

Now let m>n. Since Jn+1/‘2(z) and Jy+(z) have no common zeroes, then from an equality analogous to
(14) with n replaced by m, we obtain 5' HZds =0, from which Hy, =0 for all p=n. Summarizing, v=v(n), and
5
the following theorem is proved:

THEOREM. Every homogeneous helical flow in a sphere of radius R has the form v=v$.n) +v(0), where
vin) is given by (11) for A= ”(n)R—l’ vﬁrn) = [p(n)]_l R rot V_(_n), and Hy, is an arbitrary homogeneous harmonic poly-
nomial of degree n. In particular, 2n+1 linearly independent helical flows correspond to each value of A=

”f{n) R_i.

Remark 1. When H, possesses axial symmetry, the solutions obtained are known (see [1], for instance).
If n=1, then symmetry relative to the axis given by the vector grad H; automatically holds. The streamline
pattern in the meridian section is represented in [2] for n=k=1.

Remark 2. Let .
H =r"P7 (cosB)cosmep at 0Lm<n,

w = r"PL"“(cosG) sinjm|@ at —n<<m<O0.

It can be shown that the family of vector fields {vﬁrn), v{} for all possible n, k=1, |m|=n, A= MR, Hy=Hp
is the orthogonal basis in the space J%Q) [3]. The proper basis of the operator A from [3] in the sphere Q is
also associated with the fields v{" and v{?). It is formed by the fields v for all possible n, k, m, A= ﬂgl)R'i
and the fields

v,,(n) = Vg-l) —T (n + %) L Intise (Ml('an+i)) grad Hy

for all possible n, k, m, A= u(l?ﬂ)R"i. Here v{n) corresponds to the eigenvalue v[u&n) R™!1?, and vfkn) to the eigen-

value v[ul({n“)R“]Z. This basis affords the possibility of rapidly solving the Cauchy problem for a system of

viscous fluid motion equations in a sphere in a Stokes linearization by using the Fourier method.
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